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High Nitrate Delivery to Coastal 
Waters

• Accelerated agricultural N 
runoff in recent decades

• Receiving tributaries 
saturated with nitrate

• In-stream nitrate 
processing efficiency is 
typically low

• Large river systems 
essentially act as 
conduits for nitrate 



Promoting In-Stream Nitrate 
Processing

• Backwaters account for 30% of the surface area 
of the UMR

• Support abundant macrophyte growth and 
attached microbial communities

• Suitable habitat for nitrification-denitrification
• Accrete organic carbon-rich anaerobic sediment
• Biological uptake, bacterial denitrification, and 

burial of N in backwaters may be a viable 
strategy for reducing nitrate delivery to coastal 
waterways



Backwater N Processing Efficiency 
Limited by Nitrate Delivery

• Richardson et al. (2004)
• Pool level regulation and 

dampened flooding 
cycled impede flows to 
backwaters

• Re-establishing 
hydrological connectivity 
to backwaters of large 
river systems may 
improve overall nitrate 
processing efficiency



Knowledge Gaps
• How efficient are 

backwaters in retaining 
and processing N?

• Can efficiency be 
optimized by considering 
load and residence time?

• What maximal nitrate 
retention capacities can 
we expect?



Flow-Controlled Backwaters in 
Pool 5 of the UMR



Net Nitrate Retention

• Internal nitrate inputs via nitrification
were not included in the calculation
(i.e., gross nitrate retention)
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Controlled flow range = 0 to ~ 1.5 m3 s-1



Lake Culvert dia.
(m)

Mean depth
(m)

Area
(ha)

Clear 0.91 0.8 10

Lower Peterson 1.22 1.2 8

Third 0.91 0.6 15

Second 0.76 0.3 7

First 0.91 0.6 10

Schmoker’s None 0.9 19



Intake structure above dike

Lower Peterson culvert inflow
Discrete flow measurements
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Mean culvert flow 
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Lake Input

(kg d-1)

Output

(kg d-1)

Net retention 
(kg d-1)

Net retention
(%)

Third 108.3 (21.1)a 63.4 (13.9)bc 44.9 (7.9)a 41.5

Clear 173.3 (41.5)a 128.5 (33.2)ab 44.8 (13.2)a 25.8

Lower Peterson 190.2 (39.9)a 155.8 (34.4)ab 34.4 (9.5)ab 18.1

First 193.4 (52.7)a 178.7 (48.7)a 14.7 (5.1)c 7.6



Retention capacity
limited by N delivery

Retention capacity
limited by uptake

and diffusion

Optimal retention capacity
and efficiency

Third Lake ?
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Contrasts in Backwater Nitrate 
Retention

• Effects of varying mean residence time 
on mean nitrate retention efficiency and 
capacity (between-lake differences).

• Effects of varying nitrate load over a 
constant residence time on mean 
nitrate retention efficiency and capacity 
(within-lake variations).
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CONCLUSIONS
• N processing efficiency is high (> 40%) in 

backwaters of large river systems versus in the 
main channel (5 to 20%).

• Increasing connectivity between main channels 
and backwaters may improve overall in-stream 
N processing efficiency.

• Residence time, nutrient uptake length, and 
contact time regulate N processing efficiency in 
backwaters. These variables need to be 
considered in engineering designs to increase 
connectivity.



FUTURE RESEARCH
• The role of macrophyte structure and backwater 

morphometry in affecting residence time 
distribution and water displacement in 
backwaters.

• Improvement and use of hydrological and water 
quality models to explore management 
scenarios to increase large river-backwater 
connectivity and N processing efficiency
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